

# Portfolio for Kevin Small Technical Writer

March 2023 rev 1.3



### **Technical Writer**

Doc. Ref : PM-01.001

Revision : 1.3

Date : 2023-03-11

Section : Page: 2 of 18

### ---- Contact Information ----

Kevin Small 279 Reichert Drive Beaumont, AB Canada T4X 1Z7

Cell: 403.348.6326 email: kevin@mundocreek.com

website: mundocreek.com

Permission to use complete documents or portions and samples of documents that I have produced has been obtained in writing from all companies.

### **Revision History**

| Rev.    | Date       | Description                                       |
|---------|------------|---------------------------------------------------|
| initial | 2019-11-02 | Initial release.                                  |
| 1.0     | 2019-11-21 | Update contents, add additional example documents |
| 1.1     | 2022-02-15 | Address update                                    |
| 1.2     | 2022-04-01 | Misc updates (added AutoCAD,                      |
| 1.3     | 2023-03-11 | Misc updates                                      |



# **Technical Writer**

Doc. Ref : **PM-01.001** 

Revision: 1.3

Date: 2023-03-11

Section: Page: 3 of 18

# **Table of Contents**

| 1. My   | y Acquired Skills                   | 4  |
|---------|-------------------------------------|----|
| 2. Do   | ocuments Created                    | 5  |
| 3. Sa   | amples                              | 6  |
| 3.1     | Document Standards                  | 6  |
| 3.2     | Manuals                             | 7  |
| 3.3     | Standard Operating Practices (SOPs) | 8  |
| 3.4     | Summaries                           | 9  |
| 3.5     | Work Instructions                   | 10 |
| 3.6     | Tally and Reference Booklets        | 11 |
| 3.7     | Training Documents                  | 11 |
| 3.8     | Signs and Labels                    | 12 |
| 3.9     | Schematics and P&IDs                | 13 |
| 4. IIIu | ustrations                          | 14 |
| 4.1     | Component Illustrations             | 14 |
| 4.2     | Modified Photos                     | 14 |
| 4.3     | System Diagrams                     | 15 |
| 5. Ap   | ppendix                             | 16 |
| 5.1     | Glossary                            | 16 |
| 5.2     | Abbreviations                       | 17 |
| 5.3     | Attachments                         | 18 |



### **Technical Writer**

Doc. Ref : PM-01.001

Revision : 1.3

Date : 2023-03-11

Section : Page: 4 of 18

# 1. My Acquired Skills

### General Highlights

- Represented (acceptance commissioning and warranty) a large U.S. based oilfield equipment manufacturer in India, Russia, Ukraine and Uzbekistan.
- Owned and operated a manufacturing business (custom control panel assembly and installation) in Alberta.
- Managed a \$2 million dollar project to integrate a controls system onto four different types of high pressure pumping units.

### Documentation Specific Highlights

- Set up and managed a document control system, complete with document review and approval process.
- Set up structure and built content (modules) for an employee training system.
- Set up structure and built content (SOPs, process flow charts) for a manufacturing operation.
- Oversaw the creation of part numbers and the validation, input & revision of BOMs for an MRP system.

### Programs

- Microsoft Office (Word, Excel, Visio, Power Point), Libre Office (Write, Calc, Draw)
- Adobe Acrobat
- Libre Office (Writer, Calc, Draw)
- Corel X7 Suite, Gimp
- AutoCAD (basic level), DraftSight (basic level)
- OrCAD, Solidworks Composer (basic level)
- HTML (basic level)
- PLC programming (basic level)

### Languages

- Conversant: Portuguese
- Basic: Spanish, Italian, Russian and Dutch

### Attributes

- Reliable. Results driven.
- Quality and consistency oriented. Strict adherence to company and industry standards
   & accepted practices.
- Able to work independently or in a team environment.



### **Technical Writer**

Doc. Ref: PM-01.001

Revision: 1.3

Date: 2023-03-11

Section: Page: 5 of 18

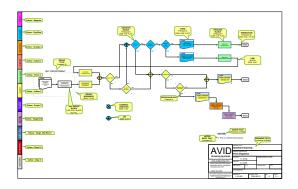
# 2. Documents Created

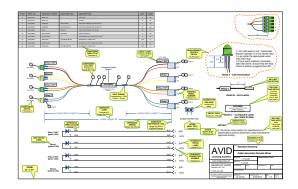
- Operations and Maintenance Manuals comprehensive documents containing safety, equipment description & operation, maintenance and troubleshooting sections.
- Standard Operating Procedures (SOPs)
  - Infrastructure administration, safety, engineering, production, purchasing, inventory control, QA, documentation and shipping & receiving.
  - **Equipment Manufacturing –** work orders, work instructions for assembly, configuration, modification & repair, QC and packing & shipping instructions.
  - **Grow Operations** security, employee and visitor vetting, growing, pest & disease control, harvesting, maintenance and equipment cleaning & sterilizing.
- Summaries one page system operating reference sheets (common commands, GUI & connection "maps", etc...) and equipment maintenance sheets.
- Work Instructions electronic upgrade, programming, calibration and QC procedures complete with the system to validate, standardize, approve and organize these for easy access and distribution.
- Tech Advises / Technical Bulletins advisories for alerting personnel of various "situations" complete with the system to validate, standardize, approve and organize these for easy access and distribution
- Training Documentation tailored, modular based topics (general knowledge, specific equipment operation, field maintenance & troubleshooting, etc...) complete with knowledge quizzes.
- Pocket Technical Reference company specific and general electronics info in a pocket size book (over 400 copies were printed of one version that I created).
- Tally Books customized pocket sized notebooks with industry standard information and lined note pages.
- Sales Brochures equipment specific complete with specifications.
- Labels pipe labels, equipment labels, room signs,
- Schematics and P&IDs multi page electrical schematics, piping P&IDs.
- Illustrations for the Above Products I've created and/or modified: photos, general assemblies, concept drawings, GUI "snips", flow charts, troubleshooting & repair charts and tables & block diagrams.



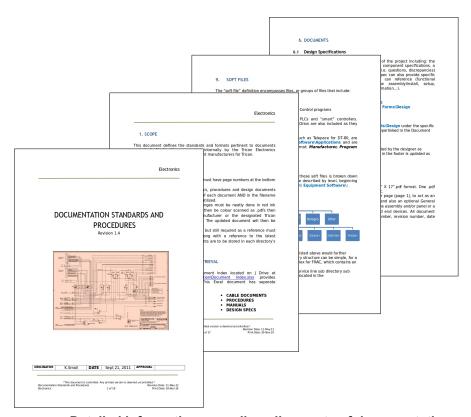
# **Technical Writer**

Doc. Ref : PM-01.001


Revision : 1.3


Date : 2023-03-11

Section : Page: 6 of 18


# 3. Samples

### 3.1 Document Standards





Standards detailing colours, fonts and sizes maintain consistency throughout all documentation.

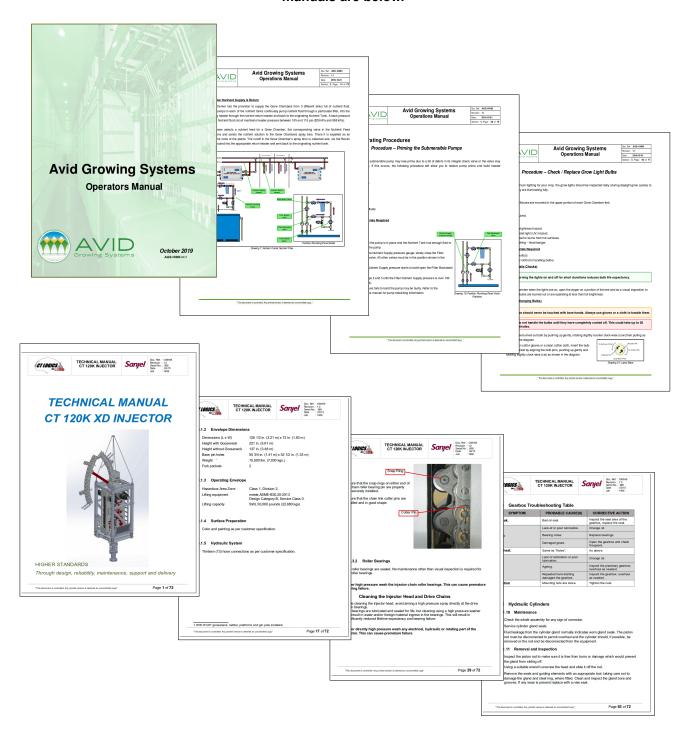


Detailed information regarding all aspects of documentation



### **Technical Writer**

Doc. Ref : PM-01.001


Revision : 1.3

Date : 2023-03-11

Section : Page: 7 of 18

### 3.2 Manuals

This portfolio was created in a manual format to demonstrate my layout style. Samples of other manuals are below.





### **Technical Writer**

Doc. Ref : PM-01.001

Revision : 1.3

Date : 2023-03-11

Section : Page: 8 of 18

# 3.3 Standard Operating Practices (SOPs)

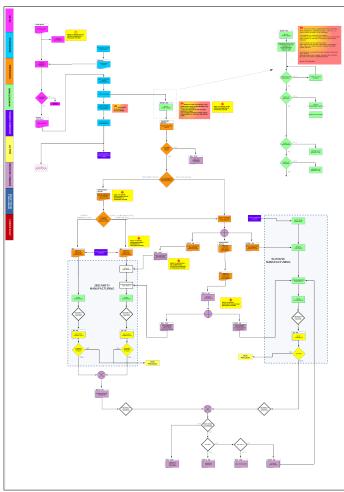



Illustration 1: Manufacturing Flowchart

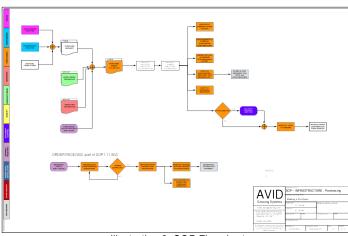
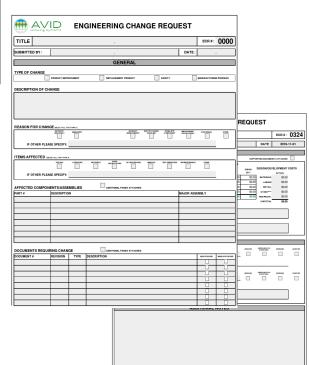



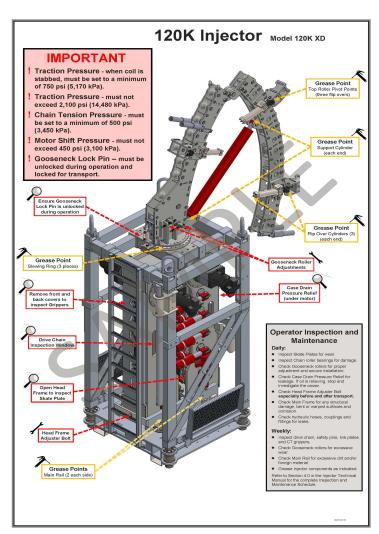

Illustration 2: SOP Flowchart



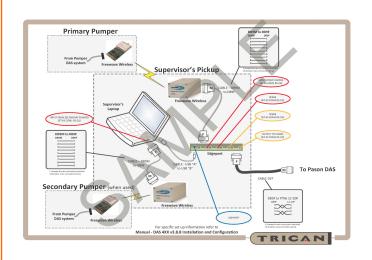




### **Technical Writer**


Doc. Ref: PM-01.001

Revision: 1.3


Date: 2023-03-11

Section: Page: 9 of 18

### 3.4 Summaries



Note: The injector graphic is "from others"



#### TRICAN

#### Water Brake Operation

For Frac Pumpers having a "ganged" Water Brake valve handle (currently units 620120 and above, except for 620138 through 620141)

- 1. Engage the tractor hydraulics.
- 2. Set the tractor engine to approx 1250 RPMs.
- 3. Turn on the trailer battery disconnect switches. This provides power to the Water Brake tachometer and hydraulic cooling fans as well as the local control panel.
- 4. Ensure that the Water Brake valve handle is in the Water Jacket position (down). Engage the Water Brake by actuating the Water Brake hydraulic control lever. The Water Brake should then operate at approx. 2500 RPMs (use the tachometer on the Water Brake control enclosure). DO NOT EXCEED 2550 RPMs.
- 5. Monitor the Water Jacket temperature on the Local Control panel display. This will either be an operator screen (HMI) or PRAN display.
- screen (HMI) or PRAN display.

  6. When the Water Jacket temperature reaches 90°F, move the Water Brake valve handle to the LTA position (up).

  7. When the LTA or intercooler temperature reaches 90°F, move the Water Brake valve handle to the Water Jacket position (down).
- Disengage the Water Brake hydraulic control lever.
- 9. The engine is ready to be started.





The hydraulic cooling fans will start automatically as the hydraulic oil heats up. The Fan Override switch, mounted on the side of the Water Brake control enclosure can be used to manually run these fans if required.

In the event of a coolant system overpressure, this system automatically relieves glycol back to the radiator reservoir.



### **Technical Writer**

Doc. Ref: PM-01.001

Revision: 1.3

Date: 2023-03-11

Section: Page: 10 of 18

### 3.5 Work Instructions



#### Electronics

#### SCOPE This <u>only</u> applies to Twin Disc transmissions before 2005 with an "**AK**" suffix in their model number

model number.

If the transmission loses the ACC Pedal parameters, the message "TRAN SYSTEM FAULT ACC Pedal "will be displayed on the transmission display. This procedure will assist the technician to restore the MIN and MAX ACC Pedal values.

Refer to Twin Disc dwg # 1019167 for further information.

#### DESCRIPTION

The local control endosure, whether it is a new 'Retrofit' type or the original control endosure, should have a potentiometer connected across three wires from the Twin Disk (TDEC) hamess as shown in the diagram below. If not, you will have to make this assembly and leave it installed on the unit.



#### PROCEDURE

- . Power off the transmission electronics and the display. While holding both the and ,, keys on the Twin Display, turn power back on. "TROUBLESHOOTING" mode is
- Scroll up, until 14 SENSOR CALIBRATION is displayed. Press both ..., keys. simultaneously to accept. The display should now read ACC PEDL CALIBRYN.

\*This document is controlled. Any printed version is deemed uncontrolled.\* Procedure 00028 Procedures & Bext Practices 2 of 3 Print Date: 20-Nov-19

- . The display will read CALIBRATE SENSOR. Press both # 73 keys simultaneously to
- The display will read SET MIN X.XX (voltage value). Dial the pot until the display reads 1.00 volts and press both 🐞 🦡 keys simultaneously to accept. The display will read WORKING for a few seconds
- The display will then read SET MAX X.XX (voltage value). Dial the pot until the display reads 4.00 volts and press both \* n keys simultaneously to accept. The display will read WORKING for a few seconds
- CALIBRATE COMPLETE will then be displayed for a few seconds. Wait until CALIBRATE SENSOR is displayed, then press the 🐞 key.
- When EXIT SUB MENU is displayed, press both and keys simultaneously to exit.
- When ACC PEDL CALIBRYN is displayed, press the wey.
- EXIT TEST should then be displayed. Press both 🐞 🛪 keys simultaneously to exit.
- 14 SENSR CALIBRATN will now be displayed. Power off the transmission and display for 20 seconds, then restore power
- Set the pot to a mid range value (2.5 volts). Apply a bit of RTV to the pot shaft to prevent it from turning.
- Calibration complete.

"This document is controlled. Any printed version is deemed uncontrolled.\* Procedure 00028 Revision Date: 12-Sep-11 Procedures & Best Practices 3 of 3 Print Date: 20-Nov-19

#### Roller Chain Wear Gauge Instructions

As a safety precaution – shut off power and lock out gears and sprockets before attempting to measure chain wear.

- Refer to the table on the wear gauge for the number of pitches to inspect. The more pitches (pitch) isolated in the measurement provides a now the respectation of the average month of war distributed to the cities.

  Throughout the class.

  Campbing for ACMERINS 8 60 roler claim, 13 pitches will be the cities of the control of the



Starting a\*10" count the number of pins/pitches to be measured for your chain's length.

Example: Count from zero to 13 for ASME/ANSI # 60 roller chain



7. If the conter of the indicated pin does not much the wear line for the corresponding data size, the chain has not line contended the wear for the contended the wear for the contended the wear for the chain for the contended the contended



Page 1 of 2

#### ROLLER CHAIN WEAR

Chain does not stetch\*. Elongation is caused when material is removed from the pins and bushings.



#### ELONGATION CONTROL

#### CHECK CHAIN WEAR

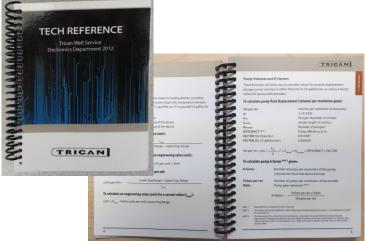
| Chain Wear Elongation Limits |             |                 |         |       |      |        |            |  |
|------------------------------|-------------|-----------------|---------|-------|------|--------|------------|--|
|                              |             | Measured Length |         |       |      |        |            |  |
| ANSI<br>Chain                | Chain Pitch |                 | Pitches | Nom   | inal | At 3%  | At 3% Wear |  |
|                              | In.         | mm.             |         | in.   | mm.  | in.    | mm.        |  |
| 25                           | .250        | 6.35            | 48      | 12.00 | 305  | 12.375 | 314        |  |
| 35                           | .375        | 9.52            | 32      | 12.00 | 305  | 12.375 | 314        |  |
| 41                           | .500        | 12.70           | 24      | 12.00 | 305  | 12.375 | 314        |  |
| 40                           | .500        | 12.70           | 24      | 12.00 | 305  | 12.375 | 314        |  |
| 50                           | .625        | 15.88           | 20      | 12.50 | 318  | 12.875 | 327        |  |
| 60                           | .750        | 19.05           | 16      | 12.00 | 305  | 12.375 | 314        |  |
| 80                           | 1.000       | 25.40           | 12      | 12.00 | 305  | 12.375 | 314        |  |
| 100                          | 1.250       | 31.75           | 20      | 25.00 | 635  | 25.750 | 654        |  |
| 120                          | 1.500       | 38.10           | 16      | 24.00 | 610  | 24.719 | 628        |  |
| 140                          | 1.750       | 44.45           | 14      | 24.50 | 622  | 25.250 | 641        |  |
| 160                          | 2.000       | 50.80           | 12      | 24.00 | 610  | 24.719 | 628        |  |
| 180                          | 2.250       | 57.15           | 12      | 27.00 | 686  | 27.812 | 706        |  |
| 200                          | 2.500       | 63.50           | 10      | 25.00 | 635  | 25.750 | 654        |  |
| 240                          | 3.000       | 76.20           | 8       | 24.00 | 610  | 24.719 | 628        |  |

Page 2 of 2

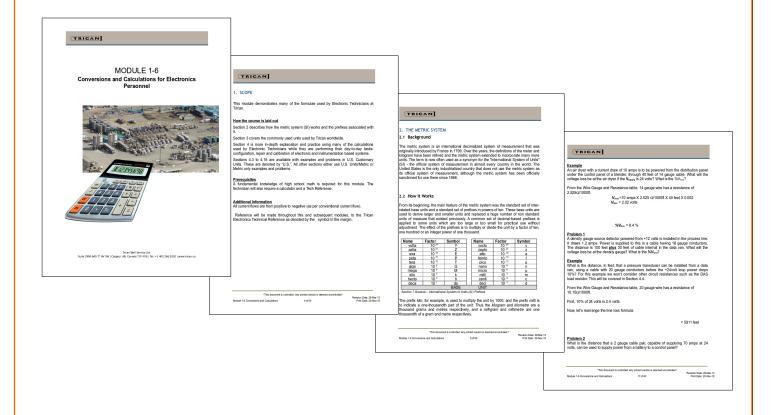


### **Technical Writer**

Doc. Ref: PM-01.001


Revision: 1.3

Date : 2023-03-11


Section: Page: 11 of 18

# 3.6 Tally and Reference Booklets





# 3.7 Training Documents



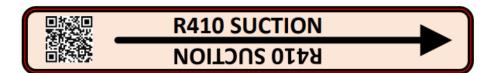


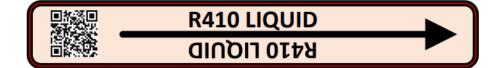
**Technical Writer** 

Doc. Ref : **PM-01.001** 

Revision: 1.3

Date : 2023-03-11


Section: Page: 12 of 18


## 3.8 Signs and Labels











**UH-005** 

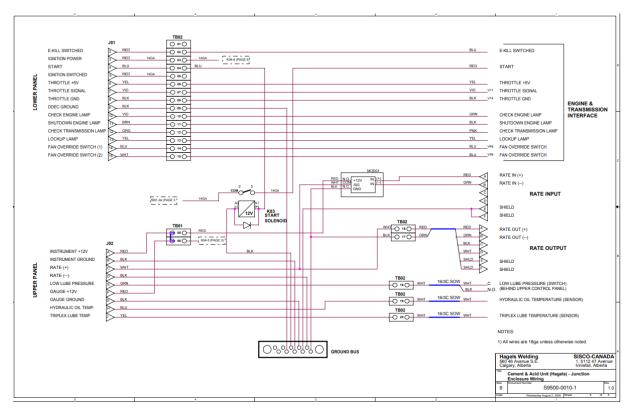


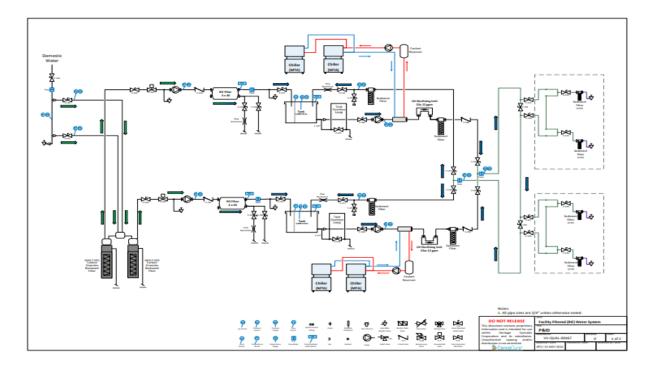
**RTU-009** 



GR216
Rear Secure Sally Port




### **Technical Writer**


Doc. Ref : **PM-01.001**Revision : **1.3** 

Date : 2023-03-11

Section: Page: 13 of 18

### 3.9 Schematics and P&IDs

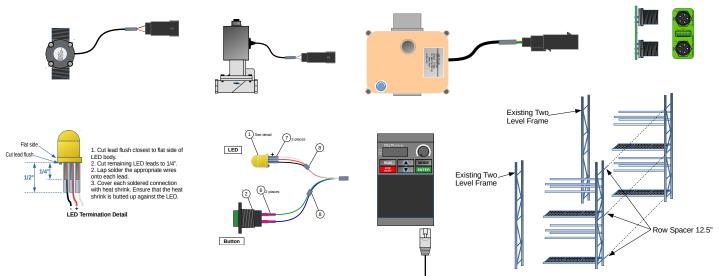






**Technical Writer** 

Doc. Ref: PM-01.001


Revision: 1.3

Date : 2023-03-11

Section: Page: 14 of 18

# 4. Illustrations

# **4.1 Component Illustrations**



### 4.2 Modified Photos

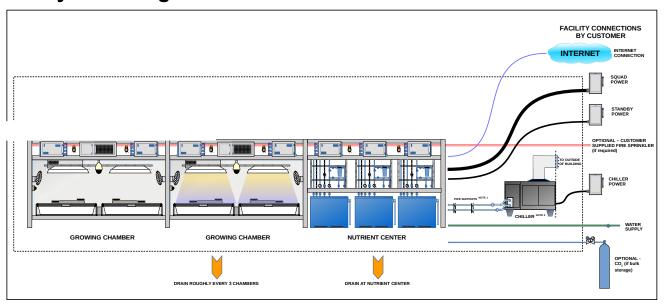


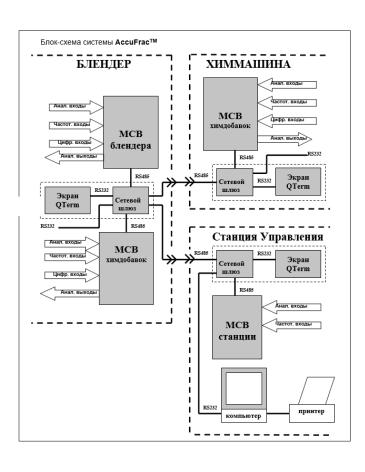
Illustration 3: Original Photo

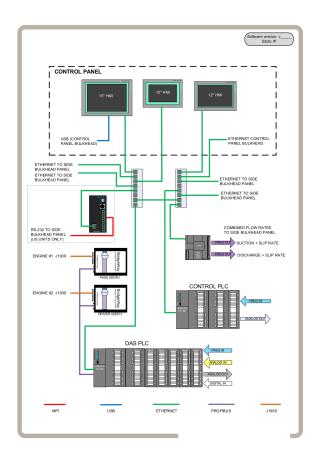


Illustration 4: Modified Photo. Clutter is removed and gooseneck has been restored (left side)




### **Technical Writer**


Doc. Ref : **PM-01.001**Revision : **1.3** 


Date : 2023-03-11

Section: Page: 15 of 18

# 4.3 System Diagrams









### **Technical Writer**

Doc. Ref: PM-01.001 Revision: 1.3 Date: 2023-03-11 Section: Page: 16 of 18

# 5. Appendix

# 5.1 Glossary

Accuracy - The closeness of an indication or reading of a measurement device to the actual value of the quantity being measured. This is usually expressed as ± percent of full-scale output or reading.

AC - Alternating current; An electric current that reverses its direction at regularly recurring intervals.

**Ambient Conditions - The conditions** around the transducer (pressure, temperature, represent values. etc.).

Ampere (amp) - A unit used to define the rate of flow of electricity (current) in a circuit. **Amplifier -** A device which draws power from a source other than the input signal and which produces as an output an enlarged reproduction of the essential features of its input.

**Analog** - A quantity that can vary continuously through a potential infinite number of values, for example, the time swept out by the hands of a clock or the output of a thermocouple.

Baud - A unit of data transmission speed equal to the number of bits (or signal events) per second; 300 baud = 300 bits per second. **Binary -** Refers to base 2 numbering system, in which the only allowable digits are 0 and 1. specified time period over which an event Bit - Acronym for binary digit. The smallest unit of computer information, it is either a binary 0 or 1.

Byte - The representation of a character in binary. Eight bits.

Calibration - The process of adjusting an instrument or compiling a deviation chart so that its reading can be correlated to the actual associated with a computing system, as value being measured.

**CPS -** Cycles per second; the rate or number of periodic events in one second, expressed in Hertz (Hz).

**CSA -** Canadian Standards Association. **Current -** The flow of electrons in an electric circuit. The unit of measurement is the Ampere.

**DC** - Direct current; An electric current flowing in one direction only and substantially constant in value.

**Decimal** - Refers to a base ten number system using the characters 0 through 9 to

Density - Mass per unit of volume of a substance. i.e. - grams/cm<sup>3</sup> or pounds/ft<sup>3</sup>. DIN (Deutsche Industrial Norm) - A set of German standards recognized throughout the world.

**Error** - The difference between the value indicated by the transducer and the true value of the parameter being sensed. It is usually expressed in percent of full scale output.

Firmware - Programs stored in PROMs, EPROMs or flash memory.

Flow Rate - Actual speed or velocity of fluid movement.

FM Approved - An instrument that meets a specific set of specifications established by Factory Mutual Research Corporation.

Frequency - The number of cycles over a occurs. The reciprocal is called the period.

**Ground -** 1. The electrical neutral line having the same potential as the surrounding earth.

2. The negative side of DC power supply. 3. Reference point for an electrical system.

Hardware - The electrical, mechanical and electromechanical equipment and parts opposed to its firmware or software.

Head Pressure - Pressure in terms of the height of fluid and the specific gravity of the fluid.



### **Technical Writer**

Doc. Ref : **PM-01.001**Revision : **1.3** 

Date : 2023-03-11

Section: Page: 17 of 18

### 5.2 Abbreviations

| •    | foot / feet         | kg.   | kilogram     |
|------|---------------------|-------|--------------|
| "    | inch / inches       | kPa   | kilo Pascals |
| AC   | Alternating Current | m     | metre        |
| atm. | atmosphere          | $m^2$ | square metre |

ccw counter clock-wise m³ cubic metre
CO₂ Carbon Dioxide Mbps Mega bits per second

CSA Canadian Standards Association MERV Minimum Efficiency Reporting Value

CEC Canadian Electric Code MSDS Material Safety Data Sheet

CMH Ceramic Metal Halide OHSA Occupational Health and Safety Act

cw clock-wise pH power of hydrogen

DC Direct Current deg. degree ppm parts per million

DI de-ionizing pH power of hydrogen

PPE Personal Protective Equipment parts per million

de-ionizing psi. pounds per square inch dwg. psi. pounds per square inch

dwg. drawing psia. pounds per square inch (atmospheric)

EC electrical conductivity psid. pounds per square inch (differential)

EC electrical conductivity psid. pounds per square inch (differential)
EOL End of Line psig. pounds per square inch (gauge)
ESA Employment Standards Act PTZ Pan Tilt Zoom

ft. foot / feet RGB red green blue reverse osmosis total dissolved solids gram

g graffi uom unit of measure
GUI Graphic User Interface US United States

HPS High Pressure Sodium USA United States of America

Hz Hertz US gal. US gallon in. inch / inches UV Ultra Violet volts

LEC Light Emitting Ceramic VFD Variable Frequency Drive Light Emitting Diode VPN Virtual Private Network

lb. pound



# **Technical Writer**

Doc. Ref : PM-01.001

Revision : 1.3

Date : 2023-03-11

Section : Page: 18 of 18

# 5.3 Attachments

| Dwg No. | Description                                    |   |
|---------|------------------------------------------------|---|
|         | Brochure – 120K Injector (separate attachment) | 4 |
|         |                                                |   |